Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Brain Pathol ; 31(5): e12997, 2021 09.
Article in English | MEDLINE | ID: covidwho-1273078

ABSTRACT

The actual role of SARS-CoV-2 in brain damage remains controversial due to lack of matched controls. We aim to highlight to what extent is neuropathology determined by SARS-CoV-2 or by pre-existing conditions. Findings of 9 Coronavirus disease 2019 (COVID-19) cases and 6 matched non-COVID controls (mean age 79 y/o) were compared. Brains were analyzed through immunohistochemistry to detect SARS-CoV-2, lymphocytes, astrocytes, endothelium, and microglia. A semi-quantitative scoring was applied to grade microglial activation. Thal-Braak stages and the presence of small vessel disease were determined in all cases. COVID-19 cases had a relatively short clinical course (0-32 days; mean: 10 days), and did not undergo mechanical ventilation. Five patients with neurocognitive disorder had delirium. All COVID-19 cases showed non-SARS-CoV-2-specific changes including hypoxic-agonal alterations, and a variable degree of neurodegeneration and/or pre-existent SVD. The neuroinflammatory picture was dominated by ameboid CD68 positive microglia, while only scant lymphocytic presence and very few traces of SARS-CoV-2 were detected. Microglial activation in the brainstem was significantly greater in COVID-19 cases (p = 0.046). Instead, microglial hyperactivation in the frontal cortex and hippocampus was clearly associated to AD pathology (p = 0.001), regardless of the SARS-CoV-2 infection. In COVID-19 cases complicated by delirium (all with neurocognitive disorders), there was a significant enhancement of microglia in the hippocampus (p = 0.048). Although higher in cases with both Alzheimer's pathology and COVID-19, cortical neuroinflammation is not related to COVID-19 per se but mostly to pre-existing neurodegeneration. COVID-19 brains seem to manifest a boosting of innate immunity with microglial reinforcement, and adaptive immunity suppression with low number of brain lymphocytes probably related to systemic lymphopenia. Thus, no neuropathological evidence of SARS-CoV-2-specific encephalitis is detectable. The microglial hyperactivation in the brainstem, and in the hippocampus of COVID-19 patients with delirium, appears as a specific topographical phenomenon, and probably represents the neuropathological basis of the "COVID-19 encephalopathic syndrome" in the elderly.


Subject(s)
COVID-19/pathology , Dementia/virology , Microglia/pathology , Nervous System Diseases/virology , Aged , Aged, 80 and over , Astrocytes/pathology , Brain/pathology , COVID-19/psychology , Case-Control Studies , Dementia/pathology , Dementia/psychology , Female , Humans , Male , Nervous System Diseases/pathology , Nervous System Diseases/psychology , SARS-CoV-2/isolation & purification
2.
Aging Ment Health ; 26(3): 534-543, 2022 03.
Article in English | MEDLINE | ID: covidwho-1030980

ABSTRACT

OBJECTIVE: Few studies have examined lockdown effects on the way of living and well-being of older adults stratified by cognitive state. Since cognitive deficits are common in this population, we investigated how cognition influenced their understanding of the pandemic, socio-behavioral responses and lifestyle adaptations during lockdown, and how these factors affected their mood or memory. METHOD: Telephone-based survey involving 204 older adults ≥65 y/o (median: 82) with previous assessments of cognitive state: 164 normal-old (NOLD), 24 mild-neurocognitive disorder (mild-NCD), 18 mild-moderate dementia. A structured questionnaire was developed to assess psychological and socio-behavioral variables. Logistic regression was used to ascertain their effects on mood and memory. RESULTS: With increasing cognitive deficits, understanding of the pandemic and the ability to follow lockdown policies, adapt to lifestyle changes, and maintain remote interactions decreased. Participants with dementia were more depressed; NOLDs remained physically and mentally active but were more bored and anxious. Sleeping and health problems independently increased the likelihood of depression (OR: 2.29; CI: 1.06-4.93; p = 0.034 and OR: 2.45; CI: 1.16-5.16; p = 0.018, respectively); Regular exercise was protective (OR: 0.30; CI: 0.12-0.72; p = 0.007). Worsening subjective memory complaints were associated with dementia (p = 0.006) and depression (p = 0.004); New-onset sleeping problems raised their odds (OR: 10.26; CI: 1.13-93.41; p = 0.039). Finally, >40% with health problems avoided healthcare mainly due to fear of contagion. DISCUSSION: NOLD and mild-NCD groups showed similar mood-behavioral profiles suggesting better tolerance of lockdown. Those with dementia were unable to adapt and suffered from depression and cognitive complaints. To counteract lockdown effects, physical and mental activities and digital literacy should be encouraged.


Subject(s)
COVID-19 , Aged , Cognition , Communicable Disease Control , Humans , Life Style , SARS-CoV-2
3.
EClinicalMedicine ; 26: 100490, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-696486

ABSTRACT

BACKGROUND: Delirium may be one of the presenting symptoms of COVID-19, complicating diagnosis and care of elderly patients with dementia. We aim to identify the prevalence and prognostic significance of delirium as the sole onset manifestation of COVID-19. METHODS: This is a retrospective single-centre study based on review of medical charts, conducted during the outbreak peak (March 27-April 18, 2020) in a Lombard dementia facility, including 59 elderly subjects with dementia and laboratory-confirmed COVID-19. FINDINGS: Of the 59 residents, 57 (96⋅6%) tested positive (mean age: 82⋅8; women: 66⋅7%). Comorbidities were present in all participants, with 18/57 (31⋅6%) having three or more concomitant diseases. Delirium-Onset COVID-19 (DOC) was observed in 21/57 (36⋅8%) subjects who were chiefly older (mean age: 85⋅4 y/o) and with multiple comorbidities. Eleven/21 DOC patients (52⋅4%) had hypoactive delirium, while hyperactive delirium occurred in ten/21 (47⋅6%). Lymphopenia was present in almost all subjects (median: 1⋅3 × 109/L). Overall mortality rate was 24⋅6% (14/57) and dementia severity per se had no impact on short-term mortality due to COVID-19. DOC was strongly associated with higher mortality (p<0⋅001). Also, DOC and male gender were independently associated with increased risk of mortality (OR: 17⋅0, 95% CI: 2⋅8-102⋅7, p = 0⋅002 and 13⋅6, 95% CI: 2⋅3-79⋅2, p = 0⋅001 respectively). INTERPRETATION: Delirium occurrence in the elderly with dementia may represent a prodromal phase of COVID-19, and thus deserves special attention, especially in the presence of lymphopenia. Hypoxia and a severe inflammatory state may develop subsequently. DOC cases have higher short-term mortality rate. FUNDING: None.

SELECTION OF CITATIONS
SEARCH DETAIL